

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 1 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset

Test Suite – Software User Manual

CAN-N7S-CTSDP-SUM rev. 2.2

N7 SPACE SP. Z O.O.

Prepared by Date and Signature

Konrad Grochowski

Verified by

Mateusz Dyrdół

Approved by

Seweryn Ścibior

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 2 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Table of Contents

1 Introduction ... 5

2 Applicable and reference documents ... 6

2.1 Applicable documents .. 6

2.2 Reference documents ... 6

3 Terms, definitions and abbreviated terms.. 7

4 Conventions ... 8

5 Purpose of the Software... 9

5.1 CTESW .. 9

5.2 CTSSW .. 9

6 External view of the software .. 10

6.1 CTESW .. 11

6.2 CTSSW .. 12

7 Operations environment .. 13

7.1 General ... 13

7.2 Hardware configuration ... 13

7.3 Software configuration ... 14

7.4 Operational constraints .. 14

8 Operations basics ... 15

9 Operations manual ... 16

9.1 General ... 16

9.2 Set‐up and initialization ... 16

9.2.1 Obtaining source .. 16

9.2.2 Setting up the environment .. 16

9.2.3 Configuration ... 18

9.2.4 Checking the configuration.. 20

9.3 Getting started .. 20

9.4 Mode selection and control .. 21

9.5 Normal operations .. 21

9.6 Normal termination .. 22

9.7 Error conditions ... 22

9.8 Recover runs .. 22

10 Reference manual ... 23

10.1 Introduction .. 23

10.2 Help method ... 23

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 3 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

10.3 Screen definitions and operations .. 24

10.4 Commands and operations ... 24

10.5 Error messages ... 26

11 Tutorial ... 27

11.1 Introduction .. 27

11.2 Getting started .. 27

11.3 Using the software on a typical task .. 27

11.3.1 Add new test to CTSSW ... 27

11.3.2 Generating MPALB X IDE project for CANSW .. 29

12 Analytical Index ... 31

13 Lists .. 32

13.1 List of Tables ... 32

13.2 List of Figures .. 32

13.3 List of Listings ... 32

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 4 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Change Record

Issue Date Change

1.0 2021-06-28 Initial release

1.1 2021-10-17 Fixes for CDR RIDs:

• word ‘optional’ replaced with ‘alternative’ in some sentences

• Captions added to all code listings

• Explicit mention the Ubuntu 20.04 as the reference system

• RD8 reference changed to SCons user manual

• 9.2.1. – added note about git submodules

1.2 2021-11-18 • Updated referenced documents’ versions (for v3.1.3)

1.3 2021-11-26 • Updated referenced documents’ versions (for v3.2.0)

2.0 2024-11-30 CANopen Library Toolset project MTR:

• Document identifier changed from CAN-N7S-UM-21002 to

CAN-N7S-CTSDP-SUM

• New ESA contract identifier added to footer

• Introduction updated

• Reference documents updated

• Updated handling multiple platforms

2.1 2025-06-04 Release for TRR:

• Opening MPLAB moved to CANDP-SUM

• Added notes about building LEON3 docker image

• Reference documents updated

2.2 2025-09-08 Release for CDR/QR:

• Reference documents updated

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 5 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

1 Introduction

This document provides Software User Manual for the CANopen SW Library Test Environment and

Test Suite deliverables of the CANopen Library Toolset project.

CANopen SW Library (CANSW) is an adaptation to space industry requirements of an existing and

field-tested open-source CANopen library (lely-core). CANSW is compliant with space-specific

CANopen extensions defined in ECSS-E-ST-50-15C and ECSS Criticality Category B software

requirements. It was developed in the scope of previous ESA activity and validated on representative

hardware platform (SAMV71). In the scope of this project its validation will be extended to include

other ARM (SAMRH71 and SAMRH707) and LEON3 (GR712RC) platforms.

CANopen Library Test Environment (CTESW) defines the environment required to execute CANopen

Library Test Suite (CTSSW) which is used to validate CANSW. CTSSW was developed in the scope

of previous ESA activity and is available as open-source software. In the scope of this project CTESW

will be extended to support new platforms and CTSSW will be executed on those.

CANopen Library Development Support Software (CDSSW) is a set of new tools developed in the

scope of this project and aiming at supporting design of CANopen networks using CANSW. It will

provide user with capabilities to verify semantic correctness of the multiple nodes building the CANopen

network and offer support with editing, monitoring and instrumenting of the network.

The Software User Manual is produced as a standalone document and structured according to the SUM

Document Requirements Definition (DRD) given in Annex H of ECSS-E-ST-40C [AD1].

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 6 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

2 Applicable and reference documents

2.1 Applicable documents

ID Title Reference Rev.

AD1 ECSS – Space engineering

Software

ECSS-E-ST-40C 6 March 2009

AD2 ECSS – CANbus extension protocol ECSS-E-ST-50-15C 1 May 2015

2.2 Reference documents

ID Title Reference Rev.

RD1 CAN in Automation –

CANopen application layer and

communication profile

CiA 301 Version 4.2.0

RD2 CAN in Automation –

Electronic data sheet specification

for CANopen

CiA 306 Version 1.3.0

RD3 CANopen Library Toolset

Test Suite –

Interface Control Document

CAN-N7S-CTSDP-ICD 2.4

RD4 CANopen Library Toolset

Test Suite –

Software Requirements Specification

CAN-N7S-CTSDP-SRS 2.3

RD5 CANopen Library Toolset

Test Suite –

Software Design Document

CAN-N7S-CTSDP-SDD 2.3

RD6 CANopen Library Toolset

Test Suite –

Software Configuration File

CAN-N7S-CTSDP-SCF 2.4

RD7 CANopen Library Toolset

Coding Standards and Tools

CAN-N7S-CSTD 1.3

RD8 SCons: A software construction tool https://scons.org/doc/

https://scons.org/doc

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 7 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

3 Terms, definitions and abbreviated terms

This document acronyms and abbreviations are listed here under.

CAN Controller Area Network

CANDP CANopen SW Library Data Package

CANSW CANopen SW Library

CDSDP CANopen Development Support Data Package

CDSSW CANopen Development Support Software

CTESW CANopen Test Environment Software

CTSDP CANopen Test Suite Data Package

CTSSW CANopen Test Suite Software

HWTB Hardware Test Bench

N7S N7 Space

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 8 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

4 Conventions

This Software User Manual describes a software project, therefore it refers to various commands that

can be executed in the terminal and it presents various source code fragments. In order to make those

special blocks more readable, numerous style conventions are used. This chapter summarizes said

conventions.

Short commands and code fragments that are embedded inside normal text paragraphs use this

style with a monospace font.

Commands that are a bit longer or span multiple lines follow the following style:

$ command

Output (optional)

All commands listed in this manual were prepared and validated on Ubuntu 24.04 system. Any similar

Linux system should support all of the commands, it is recommended to use Ubuntu/Debian family.

Directory contents listings follow the same convention:

include/

└── subfolder/

 └── file

lib/

└── a generic comment about contents of lib/

share/

C language source code blocks use the below style:

co_nmt_t* nmt_service = co_nmt_create(network, device);
assert(nmt_service != NULL); // must be non-null

Python language source code blocks use the below style:

nmt = co.nmt(network, device)
assert nmt != None # must be not None

The syntax highlighting colours used in the above block are defined as follows:

C Preprocessor directive

C Preprocessor include path

Keywords

NULL
None

Number literal

String literal

Comments

Other

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 9 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

5 Purpose of the Software

CTSDP – Technical Data package for the CANopen Test Suite – contains two software items:

• CTESW – CANopen SW Test Environment.

• CTSSW – CANopen SW Test Suite

The main purpose of those items is to provide validation environment and tests for the CANSW –

CANopen SW Library, an ECSS-compliant [AD2] C language library providing CANopen [RD1]

protocol stack software implementation.

5.1 CTESW

Purpose of the CTESW is to provide a framework for defining, building and executing tests needed to

validate CANSW. The tests need to execute on two machines connected with CAN buses. One machine

is called Host and is the primary driver of the test – the machine user executing tests directly interacts

with. The second machine is called HWTB (Hardware Test Bench) and is a space-grade embedded

system representative, with dedicated CAN peripherals. Host machine has x86-64 architecture, HWTB

is based on target platform (ARM) development board or TSIM simulator (GR712RC).

From the point of view of the user, CTESW provides two main components:

• Plugins for the SCons [RD8] build tool, allowing for convenient definition of the test, building

and executing it in a well-designed and user-friendly tool.

• C language library for helping defining applications used by the test.

5.2 CTSSW

CTSSW provides set of validation tests for the CANSW. It is built upon CTESW and uses it to build

and execute those tests. Provided tests cover all requirements extracted from ECSS standard for the

CANopen protocol stack.

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 10 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

6 External view of the software

Both software items are delivered as archive containing source files, build system configuration files

and CANSW version under test. For user convenience CTSSW archive embeds CTESW deliverable,

but user can replace it with different version if necessary. User can interact with CTSSW and CTESW

via command-line interface (CLI) of the SCons tool [RD8].

Details on the composition of the software items, versions etc. can be found in data-pack software

configuration file – CANDP-SCF [RD6].

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 11 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

6.1 CTESW

The CTESW directory structure can be described as follows:

CTESW/

├── doc/
│ └── CTESW Doxygen files

├── docker/

│ └── Dockerfiles for CTESW containers

├── ld/

│ └── Linker scripts for supported microcontrollers

├── resources/
│ ├── ci/

│ │ └── Continuous Integration support scripts

│ ├── bsp/

│ │ └── HWTB Board Support Package headers and source files

│ ├── build-configs/

│ │ └── Build configuration files for SCons
│ ├── LibCANopen/

│ │ ├── lely-core/ - CANSW repository copy

│ │ └── dcf2dev.sh – dcf2dev wrapper script (Python venv)

│ ├── mplab/

│ │ └── MPLAB project generation scripts

│ ├── n7-core/

│ │ └── N7-Core library headers and source files

│ └── TestFramework/

│ ├── Test Framework headers and source files

│ └── HAL/

│ └── Hardware Abstraction Layer implementations

├── site_scons/

│ ├── site_tools/

│ │ ├── libs/

│ │ │ └── Python utilities to be used by SCons plugins

│ │ ├── platforms/

│ │ │ └── SCons settings for supported platforms

│ │ └── SCons plugins sources

│ └── site_init.py – SCons tool extension point

├── sonar/

│ └── Sonar reports generator scripts

├── svf-configs/

│ ├── Software validation test setups configuration files
├── tests/

│ └── CTESW integration tests sources

├── validation/

│ └── CTESW design reviews, inspections and manual tests

├── ctsdp-srs.json – CTESW and CTSSW requirements
└── SConstruct – SCons main definition file for the CTESW

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 12 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

6.2 CTSSW

The CTSSW directory structure can be described as follows:

CTSSW/

├── configs/ -> environment/configs (symbolic link)
├── environment/

│ └── Copy of the CTESW code

├── resources/ -> environment/resources (symbolic link)

├── site_scons/ -> environment/site_scons (symbolic link)

├── tests/

│ ├── dcf2dev/
│ │ └── dcf2dev validation tests

│ ├── ecss-time/

│ │ └── CANSW ECSS TIME support validation tests

│ ├── emcy/

│ │ └── CANSW EMCY service validation tests

│ ├── nmt/
│ │ └── CANSW NMT service validation tests

│ ├── pdo/

│ │ └── CANSW PDO service validation tests

│ ├── sdo/

│ │ └── CANSW SDO service validation tests

│ └── sync/

│ └── CANSW SYNC service validation tests

├── validation/

│ └── CANSW design reviews, inspections and manual tests

├── candp-srs.json – CANSW requirements

├── candp-sss.json – ECSS standard requirements for CANSW (for SRS tracing)
└── SConstruct - SCons main definition file for the CTSSW

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 13 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

7 Operations environment

7.1 General

CANSW validation requires two machines connected with two CAN buses. The first machine, called

Host, must be an x86-64 machine running Linux operating system with preinstalled required software

(see section 7.3). It also has JTAG and CAN-USB dongles connected to its USB ports and their drivers

properly installed. If direct connection to USB ports is troublesome – a proxy machine can be used,

which will forward JTAG and CAN messages via Ethernet. Such configuration also allows Host to

become embedded as Docker container, which greatly simplifies software configuration process. See

next section for better description of supported hardware configuration.

The second machine required for the validation is called HWTB and is based on target platform

development board, if necessary (for ARM SAMV71), modified to provide CAN peripheral.

For LEON3 targets it is possible to perform the validation on the simulator (TSIM) alone.

7.2 Hardware configuration

Figure 1 presents general overview of hardware configuration required to execute tests using CTESW

(so all tests from CTSSW). This was the configuration used in the activity. It requires additional proxy

(as simple as Raspberry PI on the figure) to handle USB drivers for CAN and JTAG dongles, but as a

benefit all other software items can be embedded inside Docker container and easily updated during the

scope of the project, or reproduced on a different machine.

Figure 1 – CTSSW Docker based hardware configuration.

Figure 2 presents alternative configuration, which does not require any proxy – all peripherals are

directly connected to physical machine. It requires proper permissions on the Linux machine and proper

configuration of all software items on that machine.

Figure 2 – CTSSW hardware configuration with dedicated physical machine.

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 14 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

For LEON3 platform – GR712RC – an TSIM3 simulator can be used. No external HWTB is required

then, only software license for TSIM3. This approach was used in the activity.

7.3 Software configuration

CANSW (SW Under Test) is embedded inside CTESW. CTESW itself is embedded inside CTSSW.

This makes CTSSW a standalone application.

Embedded versions must be compatible – so CANSW in version 3.4.x is embedded in CTESW 3.4.x

and CTSSW 3.4.x. Delivered packages have all items in proper versions, but user might want to choose

a different setup.

CTESW and CTSSW are delivered in the form of source files, so they require proper configuration of

the operating system to build and execute tests. Complete tools list can be found in CSTD [RD7].

Simplest approach is to provide only a Docker on Linux and reproduce environment using the container

provided with CTESW (as Dockerfile – configuration file – and whole image).

7.4 Operational constraints

CTSSW and CTESW do not provide any operational modes. Only known constraint: due to nature of

CAN bus, only single set of tests can be executed at a given time at a given hardware (no parallel

connections can be made). So only a single call to CTESW/CTSSW connected to a given HW can be

made at once.

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 15 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

8 Operations basics

The main purpose of the CTSSW is to execute (using CTESW) set of validation tests of the CANSW.

This is the only operation supported by the CTSSW software. It is divided into smaller steps described

in the next chapter, but in general SW supports only one operation and mode – to perform tests.

User commanding is required for CTSSW to start execution. No user interaction is required during tests

execution; user needs only to check results when CTSSW finishes operation.

User interface is based on Command Line Interface (CLI) of the SCons tool [RD8].

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 16 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

9 Operations manual

9.1 General

CTESW is a framework for creating and running tests, user mostly interacts with CTSSW itself, hence

this chapter will focus on CTSSW operations. User is not expected to execute CTESW itself for any

other action then performing its self-tests.

9.2 Set‐up and initialization

9.2.1 Obtaining source

CTSSW source can be obtained by extracting delivered ZIP archive as in Listing 1.

Listing 1 – Unpacking CTSSW source from ZIP file.

$ unzip CAN-N7S-CTSDP-CTSSW-v3_4_0.zip # assuming version 3.4.0

Or (recommended option on Linux as CTSSW uses symbolic-links) from TAR BZIP2 – Listing 2.

Listing 2 – Unpacking CTSSW source from TAR BZIP2 file (recommended for Linux).

$ tar -xvf unzip CAN-N7S-CTSDP-CTSSW-v3_4_0.tar.bz2 # assuming version 3.4.0

Alternatively, CTSSW source can be accessed using publicly available code repository by executing the

commands from Listing 3 (assuming version 3.4.0 of the CTSSW).

Listing 3 – Retrieving CTSSW source from GitLab.com repository.

$ git clone https://gitlab.com/n7space/canopen/test-suite.git --depth=1 --branch=v3.4.0

$ cd test-suite

$ git submodule update –recursive –init

Important note: Git repository of CTSSW uses git submodules to reference CTESW repository and

CTESW has CANSW in submodule. Hence the additional command in Listing 3. It does not impact the

behaviour of delivered archives – they contain full source, including all submodules (even the *-git-

*.tar.bz2 archive, delivered as documentation of software development process).

9.2.2 Setting up the environment

Using Docker is the easiest way to reproduce necessary software environment. Otherwise, user needs to

install all dependencies from CSTD [RD7], using operating-system specific packages, which is out of

the scope of this document.

Listing 4 uses the Docker image provided as deliverable (it might take minutes to perform the import).

Listing 4 – Importing CTESW Docker image.

$ docker image load –input CAN-CTSDP-CTESW-docker-<image>-v3_4_0.tar.bz2

Loaded image: <image>:v3.4.0

Where image should be replaced with one of the following:

• core – Base image used by all other images, useful only when working only with x86 machine.

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 17 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

• cortex-m7 – Image used for building code for all supported Cortex-M7 platforms (SAMV71,

SAMRH71 and SAMRH707). Depends on core image.

• xc32 – Base image with XC32 toolchain, used by platform-specific XC32 images. Depends on

cortex-m7 image.

• xc32-ATSAM platform – Images used for building code for XC32-supported platforms.

Depends on xc32 image.

• leon3-base – Base image with BCC toolchain, but without TSIM3 simulator (license limits

redistribution of the simulator), used by LEON3 images.

User can import only a single image (and this is a recommended action when working with selected

platform – the same image can be used for Host and HWTB activities). When importing multiple images

it is recommended to start with core and then go “bottom up” through dependencies – this should

improve disk usage and import speed.

Alternatively, image can be built „from scratch” (assuming all packages are still available) using

Dockerfile provided in CTSSW source, as in Listing 5. Depending on the number of dependent images,

this steps might be necessary to be repeated (e.g.: build core, cortex-m7 and xc32 – in that order).

Listing 5 – Building CTESW Docker custom image.

$ cd <path/to/ctssw/source>/environment/docker/core

$ docker build -t n7s/ctesw:v3.4.0-core . # assuming version 3.4.0

$ cd ../<image_directory>

$ docker build \

 --build-arg REGISTRY=n7s/ctesw \

 --build-arg CORE_IMAGE_TAG=v3.4.0-core \

 -t n7s/ctesw:v3.4.0-<image> . # assuming version 3.4.0

Building your own image is required for LEON3 platform – user must have an existing TSIM3 license

and copy to execute tests. Base image with TSIM3 and BCC toolchain should be provided via

REGISTRY and IMAGE_TAG arguments when building leon3 container from it’s Dockerfile.

User might also download image directly from publicly available Docker container registry, by

providing registry.gitlab.com/n7space/canopen/test-environment:v3.4.0-

<image> as the image name to docker run command.

After setting up the image, user might use Docker containers as in Listing 6 (substituting image with

name of the image appropriate for the chosen HTWB platform).

Listing 6 – Executing command in CTESW Docker container.

$ docker run --rm -v $PWD:$PWD -w $PWD -u $(id -u):$(id -g) n7s/ctesw:v3.4.0-<image> <COMMAND>

This command will mount current directory and execute container with privileges of the current user. It

is recommended to call it this way always in the root of the CTSSW source directory.

It can be very convenient to set up this command as an alias in Linux shell as in Listing 7. This will

allow for a quick execution of other commands inside containers.

Listing 7 – Shell alias for executing command in CTESW Docker container.

$ alias docker-here='docker run --rm -v $PWD:$PWD -w $PWD -u $(id -u):$(id -g)'

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 18 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

For example, to check correctness of the image and CTSSW source, user might execute commands like

in Listing 8 (or without alias as in Listing 9) and expect similar output.

All following commands in this chapter assume that there are either executed on properly configured

environment, or are proceeded with docker run / alias.

Listing 8 – Example command executed in CTESW Docker container.

$ cd <path/to/ctssw/source>

$ docker-here n7s/ctesw:v3.4.0-core scons -h

scons: Reading SConscript files ...

...

... other help lines ...

...

CTSSW - CANopen SW Library Test Suite - v3.4.0

Licensed under European Space Agency Public License (ESA-PL) Permissive (Type 3) – v2.4

Copyright N7 Space sp. z o.o. 2020-2025

...

Listing 9 – Example command executed in CTESW Docker container.

$ cd <path/to/ctssw/source>

$ docker run --rm -v $PWD:$PWD -w $PWD -u $(id -u):$(id -g) n7s/ctesw:v3.4.0-core scons -h

same output as in Listing 8

9.2.3 Configuration

CTSSW needs to be configured to correctly work in a given hardware configuration. There are two

configuration files required by scons in order to build and run the tests – build configuration and SVF

(runtime) configuration.

9.2.3.1 Runtime configuration

Runtime configuration for HWTB is stored in INI file, some examples are available in svf-configs/

subdirectory of CTESW. By default localhost.conf file is loaded, and user must edit it or select

an appropriate file for running the tests on development setup. Listing 10 provides contents of an

example configuration file.

Listing 10 – CTESW configuration file example (example.conf).

GDB client configuration (running on host)

[gdb]

path = arm-none-eabi-gdb

verbose = True

customResetCmd = monitor reset

 monitor reset 0

 monitor reset 1

 monitor reset 8

 monitor reset

delayStartupCommands = True

enableLowPowerHandlingMode = True

timeout = 120

GDB server configuration (running on RaspberryPi or host, depending on hardware configuration)

[gdbServer]

address = canopen-rpi

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 19 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

port = 2331

username = arm

password = armdev

path = /opt/SEGGER/JLink_V780/JLinkGDBServerCLExe

args = -select USB -device ATSAMV71Q21 -endian little -if swd -speed 4000 -noir

verbose = True

connectedFlag = J-Link is connected

failedFlag = Could not connect to J-Link

HWTB power control configuration

[egse]

address = canopen-rpi

username = arm

password = armdev

power_control = none

HWTB I/O handler selection, currently only RTT is supported

[ioHandler]

type = rtt

HWTB RTT I/O handler configuration

[ioHandler.rtt]

address = canopen-rpi

port = 5555

username = arm

password = armdev

CAN bus A configuration

[canBusA]

address = canopen-rpi

username = arm

password = armdev

ipLinkCanId = can0

port = 6500

mcanId = 0

verbose = True

ipLinkCanConfig = bitrate 1000000 fd off sample-point 0.875

CAN bus B configuration

[canBusB]

address = canopen-rpi

username = arm

password = armdev

ipLinkCanId = can1

port = 6600

mcanId = 1

verbose = True

ipLinkCanConfig = bitrate 1000000 fd off sample-point 0.875

Highlighted lines are usually the only ones requiring user attention. They contain address and credentials

needed to access the proxy connected to HWTB. In configuration without proxy, localhost needs to

be provided as address (username and password are not necessary then). Other options require

changing only when operating with different hardware configuration than HWTB.

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 20 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

9.2.3.2 Build configuration

Build configuration files for HWTB are stored in resources/build-configs directory of CTESW.

This file should contain definitions for building the code for specified target board. The contents of this

file depends on the platform, as most of the definitions from it are used in HAL and BSP code. By

default, default-<platform>.conf is loaded. The simplest way of creating a new tailoring for a

custom board is copying the default file for a platform, and modifying the values of the variables to

match the hardware configuration of the microcontroller on target board. Changes in those files are

necessary only when using custom boards (other than supported development boards).

9.2.4 Checking the configuration

After setting up and configuring CTSSW and HWTB it is recommended to validate the configuration

by running CTESW self-tests. This requires optional cram tool to be present (available in the CTESW

Docker image). Those tests perform various checks of the CTESW setup. They are expected to take

20-90 min (depending on the Host hardware).

To execute them, go to CTESW subdirectory in CTSSW and execute commands (for example inside

environment provided by the Docker image) from Listing 11 and expect similar output. platform

should be replaced with the name of a supported platform (for example, samv71q21), and devboard

should be replaced with the name of SVF configuration file for selected development board.

Configuration is read from svf-configs/<platform>/<devboard>.conf file.

Listing 11 – Commands to execute CTESW validation tests.

$ cd <path/to/ctssw/source>/environment

$./run-cram.sh <platform> <devboard>

…

ALL TESTS PASSED!

Any other message than ALL TESTS PASSED! means that CTESW or HWTB is not setup or

configured properly and requires investigation. Logs from tests execution can be found in

environment/build/release/tests subdirectory. Reading messages provided in those logs

should help diagnose the issue. Most probable problems are the ones related to connection configuration

and access to proxy.

After making changes to the CTSSW configuration, re-execution of tests is recommended. It is highly

recommended to remove environment/build/release/tests subdirectory before running

the tests again (or at least subfolder containing output of the failing test). Otherwise, the failed tests

won’t be rebuilt if ran via cram, and will keep being reported as failed instead.

To help investigation, run-cram.sh script accepts the list of test paths to run as an argument, so not

all tests needs to be re-run each time.

9.3 Getting started

After setting up and validating the CTESW as described in previous section, there are no other actions

to be performed – user can execute the CANSW test suite.

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 21 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

9.4 Mode selection and control

N/A

9.5 Normal operations

Execution of the whole test suite is simply done by calling the SCons tool - Listing 12.

Listing 12 – Commands to execute CTSSW validation tests.

$ cd <path/to/ctssw/source>/

$ scons hwtbPlatformName=<platform> svf=<path/to/svf/file>

Or by using Docker – Listing 13.

Listing 13 – Commands to execute CTSSW validation tests inside Docker container.

$ cd <path/to/ctssw/source>/

$ docker run --rm -v $PWD:$PWD -w $PWD -u $(id -u):$(id -g) n7s/ctesw:v3.4.0-<image> \

 scons hwtbPlatformName=<platform> svf=<path/to/svf/file>

For clarity, further commands examples will no longer include docker run ... prefix, it is up to

the user to choose how the scons command is called.

The selected Docker image (image in the examples) must be appropriate for the selected platform

(platform in the examples). The chosen SVF must provide the given platform – CTSSW does not have

the means to detect the hardware type, so it is responsibility of the user to select those arguments

properly.

To speed up the tests execution process, on multi-core platforms it is recommended to compile

applications used by the tests before executing the tests themselves. This can be achieved by passing

special target to the SCons (test-cases-apps) and selecting desired parallel jobs count. For

example, Listing 14 uses 10 parallel jobs.

Listing 14 – Building scons target using multiple jobs.

$ scons hwtbPlatformName=<platform> svf=<path/to/svf/file> \

-j 10 test-cases-apps unit-tests-apps

Tests themselves cannot be executed in a parallel fashion (-j must be equal to 1 when running them).

SCons by default terminates the execution at the first occurrence of error. If user wants to try to perform

all tests, even if some of them fail, the -k switch should be added to the scons call.

Test execution can take 40 – 120 minutes, depending on the Host hardware.

During the execution SCons prints logs of the performed operation (including build commands, GDB

commands, CAN bus data exchange, etc.). If log needs to be archived it is recommended to use tee

command, to keep seeing progress on the standard output – Listing 15.

Listing 15 – Using tee to observe and store build logs at the same time.

$ scons <svf options> <targets> 2>&1 | tee ctssw.log

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 22 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

9.6 Normal termination

After all tests pass, the call to scons should end with 0 (zero) return code and the message:

scons: done building targets.

If that message is not present near the end of the output (it might be followed with some clean-up

messages, depending on the network speed) something went wrong and not all tests have passed.

Logs from execution of the tests can be found in build/release/tests subfolder. Each test

produces the following logs:

• Output from application executed on Host (<test name>.host.log),

• Output from application executed on HWTB (<test name>.hwtb.log),

• CAN messages exchanged on bus A (<test name>.can-a.log),

• CAN messages exchanged on bus B (<test name>.can-b.log),

• Dummy file present only when the test passes (<test name>.log).

Test name is in the form: <test case name>-<direction> where direction is either

host-to-hwtb or hwtb-to-host. This is caused by each test case being “symmetrical” so each

test application is executed once on Host and once on HWTB. This means that each test case specified

in CTSSW is executed twice during the test suite run.

9.7 Error conditions

In case of any test failure the call to scons should end with non-zero return code and the message:

scons: building terminated because of errors.

It should be preceded with one or more messages like:

scons: *** [build/release/tests/<test name>/<log file name>] Error <error code>

It is a suggestion where to look for the error information. Error code is platform dependent and should

not be investigated. Logs should be available for investigation – see previous section for details.

In case of an error on earlier stage (build, linking etc.) error message should be present directly in the

SCons output.

9.8 Recover runs

Before re-running the tests it is recommended to remove build/release/tests folder. Or at least

its subfolder containing output from the failing test. In the latter case SCons will try to execute only the

tests that were not successful. User might also execute selected subset of tests by passing their names as

targets to scons call (removing output from failing test still might be necessary).

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 23 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

10 Reference manual

10.1 Introduction

All information necessary to execute CTSSW test suite and to validate CANSW can be found in section

9. This chapter provides some helpful information if user would like to customize the execution process

or debug problems.

Detailed reference of all available functions of the CTESW can be found in the CTSDP ICD [RD3].

Details on using SCons can be found in its documentation – [RD8].

10.2 Help method

CTSSW and CTESW provide simple help method, available when calling scons -h in root folder of

the selected software. As shown below, it lists available options and their current options:

$ scons -h

scons: Reading SConscript files ...

Detected SW version from git: v3.4.0

Mkdir("build/release/")

Mkdir("build/release/gcc_host")

Mkdir("build/release/samv71q21")

scons: done reading SConscript files.

build: Defines build type (release|debug|coverage)

 default: release

 actual: release

svf: SVF hardware configuration file (/path/to/svf)

 default: svf-configs/localhost.conf

 actual: svf-configs/localhost.conf

checkCode: Set to enable additional code checks (yes|no)

 default: True

 actual: True

optimization: Optimization option used by release build (g can be passed to debug and

coverage builds also) (g|0|1|2|3|s)

 default: 2

 actual: 2

disableAsserts: Disables assertions in the code (smaller binary but reduced memory

corruption detection) (yes|no)

 default: False

 actual: False

buildDirName: Name of the main build directory (usefull for parallel CI builds)

 default: build

 actual: build

chipConfig: MCU configuration file (/path/to/chipConfig)

 default: resources/build-configs/default.conf

 actual: resources/build-configs/default.conf

hwtbPlatformName: Defines HWTB platform name (samv71q21|samrh71f20|samrh707f18)

 default: samv71q21

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 24 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

 actual: samv71q21

CTESW - CANopen SW Library Test Environment - v3.4.0

Licensed under European Space Agency Public License (ESA-PL) Permissive (Type 3) – v2.4

Copyright N7 Space sp. z o.o. 2020-2024

Use scons -H for help about SCons built-in command-line options.

Last line of the above message informs user about a way of getting SCons general options:

$ scons -H

10.3 Screen definitions and operations

N/A

10.4 Commands and operations

Basic commands are provided in section 9.5. As mentioned there, CTSSW provides only a single

command – scons – and it is all that is needed to perform the suite. User might want to execute a single

test, this can be achieved by passing its name to SCons like scons test-name. List of all test names

can be obtained from CANSW documentation, or by calling scons traces and browsing JSON file

build/release/cansw-traces.json containing list of all available tests along with their

documentation. SCons also accepts some switches that change the way the test suite is executed, see

Table 1 for details.

Table 1 – CTSSW SCons options.

Option Description

CTSSW specific

svf Path to configuration file, as described in 9.2.3.1. Detailed options available in

Table 2.

build One of release/debug/coverage. In normal test run only release

should be used. Debug mode can be used to build application if detailed

debugging is needed (but test might fail in this mode due to performance

degradation). Coverage mode could be used to obtain line and branch coverage

information, but in most cases it introduces too big execution and size overhead

– this mode is recommended only for CTESW developers.

checkCode Setting this to “no” will disable code checking during build process. Useful for

speeding up the builds during development, checks may take considerable

amount of time.

optimization Optimization option. For release builds, it can be g, 0, 1, 2, 3 or s. For

debug/coverage builds, it can be either g or 0.

disableAsserts Disables the asserts in the code. This may reduce the binary size, but will

reduce the amount of runtime checks performed.

buildDirName Name of the build directory (useful when performing various builds from the

same source directory)

chipConfig Chip configuration file with definitions of tested platform’s MCU

configuration variables, as described in 9.2.3.2.

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 25 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Generic SCons options

-k “Keep going” – continue execution after error occurrence. Useful to gather

information about all failing tests.

-j <N> Execute in N parallel jobs. See notes in 9.5. Do not use for executing tests.

--debug=explain SCons will display the reason for rebuilding a given target. Useful while

debugging failing tests or while developing a new tests.

Table 2 – CTSSW configuration file options.

Option Description

[gdb]

path Path to GDB executable.

verbose True/False – When set, GDB will include additional

information in SCons log (recommended).

customResetCmd Custom reset commands for the MCU. Multi-line strings are

supported.

delayStartupCommands If True, all the commands executed before platform startup will

be queued for execution after the startup is performed.

enableLowPowerHandlingMode For JLink SEGGER, setting this to True results in less strict

handling of communication errors, which may led to stability

increase when resetting the MCU.

timeout Timeout for GDB commands execution

[gdbServer]

address Address of the proxy to run GDB Server on, or localhost to

run locally.

port TCP port to run GDB server on.

username Credentials required to access proxy via SSH.

password
path Path on the proxy (or local) to GDB Server executable.

args GDB Server executable command line arguments.

verbose True/False – When set, GDB server will include additional

information in SCons log (not recommended, usually all

interesting information is reported by GDB, setting to true might

slow down proxy operations).

timeout Timeout for GDB communication

connectedFlag String written to standard output by the debugger that indicates the

microcontroller has successfully connected to the debugger

failedFlag String written to standard output by the debugger that indicates it

couldn’t connect to the microcontroller.

[egse]

address Address of the proxy controlling the HWTB power supply, or

localhost to run locally.

username Credentials required to access proxy via SSH.

password
power_control Power control type used by the proxy board. Can be pin,

command or none. When option other than none is selected, an

[egse.power.<option>] section must appear in this file, with

appropriate configuration options.

[egse.power.pin]

pin Pin used to control board power.

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 26 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Option Description

onIsHigh If True, the setting pin to high state powers on the board.
[egse.power.command]

onCmd Command to execute in order to enable HWTB power supply.
offCmd Command to execute in order to disable HWTB power supply.
[ioHandler]
type Selection of the way tests applications should handle their

standard output:

• rtt – Standard output is transmitted in real-time through

Segger’s RTT protocol using debugger’s link,

During CANSW validation, the RTT option is used by default, to

limit necessary links to the HWTB.

[ioHandler.rtt]

address Address of the proxy to run JLink RTT server, or localhost to

run locally.

username Credentials required to access proxy via SSH.

password
port TCP port used by JLink RTT server.

[canBusA]/[canBusB]

address Address of the proxy to run socat CAN forwarder, or

localhost to run locally.

username Credentials required to access proxy via SSH.

password
ipLinkCanId Linux CAN interface id (ip link command) to be used by given

bus. Identifier must be present on the proxy (or locally).

port Port to be used by socat to make CAN available over Ethernet.

Used even when setup locally.

mcanId MCAN device identifier to be used by given bus on the HWTB.

verbose True/False – When set, CAN traffic is visible in SCons log.

Recommended for default bus (A), not recommended to set for

both buses at once (log becomes unreadable).

ipLinkCanConfig Arguments for the ip link command used to configure the CAN

link for communication with HWTB

10.5 Error messages

As described in 9.7, SCons provides a single type of message when the command execution failed. To

investigate the reason of the failure, user must look through previous log messages from SCons, or into

detailed logs provided by the test itself. Messages in SCons log can include messages from operating

system (regarding network connection problems), used application (GCC compilation problems, GDB

errors etc.) and tests themselves.

Messages provided in output logs from applications are test-specific (test’s author is free to provide any

message), but all are prefixed with timestamp since the test execution start and all logs should end with

message containing exit code of the application – if it’s missing, the application has crashed.

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 27 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

11 Tutorial

11.1 Introduction

Chapters 9 and 10 provide complete introduction to CTSSW usage, including a step-by-step tutorial.

This chapter is focusing on CTESW and provides information for the user who would want to create

new dedicated tests for the CANSW.

11.2 Getting started

CTESW is a framework for creating CANSW tests. It consists of two main components: SCons

extensions used to specify the test for the build tool and Test Framework – a C language library for

creating tests application that will use and validate CANSW features. This tutorial will show, how to

use those components to create user own test.

11.3 Using the software on a typical task

11.3.1 Add new test to CTSSW

11.3.1.1 Select folder for the test

This is the optional step, when the tests do not match any existing categories of tests. It is however a

recommended step for “project specific” tests.

All tests are stored inside tests/ CTSSW subdirectory. New folder needs to be added there. Then, it

needs to be added to the main SCons configuration file in the root CTSSW directory – SConstruct.

It already contains a list of used directories, new one needs to be added to it like in Listing 16. Then the

newly created folder needs its own SCons configuration file – SConscript, see Listing 17 for

example. It contents will be filled in the next stages of this tutorial.

Listing 16 – Example modification of SConstruct to add new tests folder.

tests = [

 "tests/dcf2dev",

 "tests/emcy",

 "tests/ecss-time",

 "tests/nmt",

 "tests/pdo",

 "tests/sdo",

 "tests/sync",

 "tests/NEW-TEST-FOLDER-NAME",

]

Listing 17 – Empty SConscript add for new tests.

Import("env")

tests = []

here the folder specific test will be added

env.Alias("NEW-TEST-GENERIC-NAME-tests", tests) # not required, suggested for convenience

Return("tests")

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 28 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

11.3.1.2 Define two device descriptions used by the test

This is an optional step – user might want to define device’s Object Dictionaries manually using

CANSW API. It is more convenient however to define them using DCF (Device Configuration File)

format from CiA 306 standard. DCF definition is out of the scope of this document. After preparing two

matching Object Dictionary definitions, with required services etc. configured, user should place two

.dcf files inside test folder.

11.3.1.3 Write C code of both test applications

Main test code will go inside C application, one running on Host, second on HWTB. Both should follow

the same scheme, shown in Listing 18.

Listing 18 – Example of C source file of new tests.

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <lely/co/SERVICE-TO-BE-TESTED.h>

#include <TestFramework/TestHarness.h>

void

TestSetup(can_net_t *const net)

{

 // procedure called once, before the test start

 // should be used to initialize the service

 // Example:

 dev = dcf_sdo_abort_transfer_client_init(); // code from DCF file

 csdo = co_csdo_create(net, dev, SDO_NUM);

 if (co_csdo_start(csdo) != 0)

 FAIL_TEST("SSDO service start failed");

}

void

TestTeardown(void)

{

 // procedure called once, after the test finishes

 // should be used to clean up services

 // Example:

 co_csdo_stop(csdo);

 co_csdo_destroy(csdo);

}

void

TestMessageReceived(const struct can_msg *const msg)

{

 // Procedure called for each received message on CAN bus A.

 // It is called after lely-core processed the message.

}

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 29 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

void

TestStep(void)

{

 // Procedure called in the loop while the test is performed.

 // Example:

 step++;

 if (step > STEP_COUNT)

 FINISH_TEST();

}

void

TestMessageSent(const struct can_msg *const msg)

{

 // Procedure called for each message sent by lely-core on CAN bus A.

}

11.3.1.4 Add test specification to SCons configuration

When all tests files are ready, user must add them to proper SConscript – either existing one or the

newly created one from 11.3.1.1.

Inside it a template like it should be filled with proper names of the files – see Listing 19.

Listing 19 – Part of example SConscript with new test added.

dcfApp1 = env.Dcf2Dev("app1.dcf")

dcfApp2 = env.Dcf2Dev("app2.dcf")

tests += env.MakeSymmetricalTestCase(

 "NAME-OF-THE-TEST",

 ["app1.c"] + dcfApp1,

 ["app2.c"] + dcfApp2,

 trace={ # optional block of documentation, whole parameter can be omitted

 "title": "HUMAN READABLE TEST TITLE",

 "traces": ["REQUIREMENT-1", "REQUIREMENT-2"],

 "doc": {

 "given": "INPUTS",

 "when": "TESTED FEATURE",

 "then": "OUTPUTS",

 },

 },

)

11.3.1.5 Run the test

When the test specification is ready it is time to run it and see if everything is correct:

$ scons hwtbPlatformName=<platform> svf=<path/to/svf/file> NAME-OF-THE-TEST

Execution should finish normally. Possible errors will be reported in SCons log.

11.3.2 Generating MPALB X IDE project for CANSW

CTESW provides utilities for generating MPLAB X IDE library projects with lely-core sources. Those

projects are generated from lely-core’s compile_commands.json file, which is automatically created

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 30 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

by scons. The configuration of lely-core (./configure flags, etc.) in generated project is exactly the

same as in CTESW/CTSSW. This means that the generated project uses the same build flags as CTESW,

so in order to generate MPLAB project for debug builds, it should be explicitly specified via scons

arguments.

In order to create compile_commands.json file for lely-core, run the following command:

$ scons hwtbPlatformName=<platform> svf=<path/to/svf/file> LibCANopen

Afterwards, to generate MPLAB project run the Python script included in resources/mplab directory

of CTESW. This script does not have any external dependencies. To list the options of the script, use -

-help argument.

$ python resources/mplab/generate_mplab_project.py --help

usage: generate_mplab_project.py [-h] [--lely-core-dir LELY_CORE_DIR] [--makefile-path

MAKEFILE_PATH] [--lely-config-path LELY_CONFIG_PATH] compile_commands_path project_path

{atsamv71q21b,atsamv71q21rt,atsamrh71f20c}

Generate MPLAB project

positional arguments:

 compile_commands_path

 Path to compile_commands.json file

 project_path Directory of generated project

 {atsamv71q21b,atsamv71q21rt,atsamrh71f20c}

 Target platform

options:

 -h, --help show this help message and exit

 --lely-core-dir LELY_CORE_DIR

 Path to lely-core sources, auto-detected if not provided

 --makefile-path MAKEFILE_PATH

 Path to custom Makefile. If not provided, Makefile should be placed

next to the script

 --lely-config-path LELY_CONFIG_PATH

 Path to config.h file. If not provided, it's assumed that it's in

the same directory as compile_commands.json

Example invocation of this script that will generate a project in ./libcanopen-mplab directory in

release mode for SAMV71Q21:

$ python resources/mplab/generate_mplab_project.py

./build/release/samv71q21/resources/LibCANopen/lely-core/compile_commands.json

./libcanopen-mplab atsamv71q21b

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 31 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

12 Analytical Index

N/A

CANopen Library Toolset Doc. CAN-N7S-CTSDP-SUM

Test Suite – Software User Manual Date: 2025-09-08

 Issue: 2.2

N7 Space Sp. z o.o. Page: 32 of 32

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

13 Lists

13.1 List of Tables

Table 1 – CTSSW SCons options. .. 24
Table 2 – CTSSW configuration file options. ... 25

13.2 List of Figures

Figure 1 – CTSSW Docker based hardware configuration. .. 13
Figure 2 – CTSSW hardware configuration with dedicated physical machine. 13

13.3 List of Listings

Listing 1 – Unpacking CTSSW source from ZIP file. .. 16
Listing 2 – Unpacking CTSSW source from TAR BZIP2 file (recommended for Linux). 16
Listing 3 – Retrieving CTSSW source from GitLab.com repository. ... 16
Listing 4 – Importing CTESW Docker image. .. 16
Listing 5 – Building CTESW Docker custom image. ... 17
Listing 6 – Executing command in CTESW Docker container. .. 17
Listing 7 – Shell alias for executing command in CTESW Docker container. 17
Listing 8 – Example command executed in CTESW Docker container. .. 18
Listing 9 – Example command executed in CTESW Docker container. .. 18
Listing 10 – CTESW configuration file example (example.conf). .. 18
Listing 11 – Commands to execute CTESW validation tests. ... 20
Listing 12 – Commands to execute CTSSW validation tests. ... 21
Listing 13 – Commands to execute CTSSW validation tests inside Docker container. 21
Listing 14 – Building scons target using multiple jobs. ... 21
Listing 15 – Using tee to observe and store build logs at the same time. ... 21
Listing 16 – Example modification of SConstruct to add new tests folder. 27
Listing 17 – Empty SConscript add for new tests. .. 27
Listing 18 – Example of C source file of new tests. .. 28
Listing 19 – Part of example SConscript with new test added. ... 29

	1 Introduction
	2 Applicable and reference documents
	2.1 Applicable documents
	2.2 Reference documents

	3 Terms, definitions and abbreviated terms
	4 Conventions
	5 Purpose of the Software
	5.1 CTESW
	5.2 CTSSW

	6 External view of the software
	6.1 CTESW
	6.2 CTSSW

	7 Operations environment
	7.1 General
	7.2 Hardware configuration
	7.3 Software configuration
	7.4 Operational constraints

	8 Operations basics
	9 Operations manual
	9.1 General
	9.2 Set‐up and initialization
	9.2.1 Obtaining source
	9.2.2 Setting up the environment
	9.2.3 Configuration
	9.2.3.1 Runtime configuration
	9.2.3.2 Build configuration

	9.2.4 Checking the configuration

	9.3 Getting started
	9.4 Mode selection and control
	9.5 Normal operations
	9.6 Normal termination
	9.7 Error conditions
	9.8 Recover runs

	10 Reference manual
	10.1 Introduction
	10.2 Help method
	10.3 Screen definitions and operations
	10.4 Commands and operations
	10.5 Error messages

	11 Tutorial
	11.1 Introduction
	11.2 Getting started
	11.3 Using the software on a typical task
	11.3.1 Add new test to CTSSW
	11.3.1.1 Select folder for the test
	11.3.1.2 Define two device descriptions used by the test
	11.3.1.3 Write C code of both test applications
	11.3.1.4 Add test specification to SCons configuration
	11.3.1.5 Run the test

	11.3.2 Generating MPALB X IDE project for CANSW

	12 Analytical Index
	13 Lists
	13.1 List of Tables
	13.2 List of Figures
	13.3 List of Listings

		2025-09-08T22:11:20+0200
	Konrad Grochowski

		2025-09-09T13:02:53+0200
	Mateusz Dyrdół

		2025-09-09T15:47:58+0200
	Seweryn Ścibior

